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Introductive Statements

 Early and precise diagnosis plays a key role in successful patient’s 
recovery. Thanks not only to exponential advances in the field of  
medical instrumentation but also that of nano-biotechnologies and 
the constant development and testing of new nano-systems, the  
limit of what is possible in terms of medical diagnosis is being  
continuously expanded [1]. The last decades have in particular  
witnessed the birth or development of various types of nano-systems 
for use in cell-based or tissue-based diagnosis. One can cite many  
examples, which includes but it not limited to gold nanoparticles,  
quantum dots, liposomes, silica, iron or gadolinium oxide  
nanoparticles [2-5]. In this regard, the domain of oncology has been 
rather pioneering; early and precise cancer diagnosis may indeed  
allow clinicians to propose adequate and anticipated therapy and 
to significantly reduce the odds of metastatic events [6]. An area  
attracting much attention in the oncology field relates to the search for 
nano-systems often denoted “nanoprobes” in the context of diagnosis 
capable of interacting with diseased cells or tissues, in a rather specific 
way, and thus is capable of identifying and locating tumoral regions  
in vivo and checking the efficacy of a therapeutic plan versus time.

 In addition to cell or tissue specificity, via appropriate biomarkers,  
such nanoprobes should be intrinsically detectable by some way 
so as to track them within biological matter. In this regard, various  
characteristics of the nano-systems or nanoparticles can be  
exploited, typically such as luminescence, magnetism through  
Magnetic Resonance Imaging (MRI), or else radioactivity. A vast  
literature on nanoparticles developed for biomedical imaging is  
available; and listing all the existing systems under study is far beyond  
the scope of this paper. An overview of some of the most detailed  
systems is for example accessible in reference [7].

 Other features are also expected from nanoprobes intended to be 
used in nanomedicine. In particular, the systems ought to exhibit a 
high biocompatibility1. Also, a growing attention is paid to the setup 
of versatile functional nanoparticles allowing multi-functionalization, 
e.g., associating simultaneously a cell targeting agent, a stabilizing 
agent for colloidal stabilization, a drug to be delivered intracellularly,  
etc., In the latter case, the nanoprobes initially intended for cell  
diagnosis then also become a drug-carrier, paving the way for  
theranostic approaches, coupling therapy and diagnosis [8-10].

1 - In this view, it may be remarked that the use of systems containing heavy metal ions such as 
cadmium could perhaps be further discussed.
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Abstract
 Biomimetic calcium phosphate apatites, analogous to bone  
mineral, may now be produced synthetically. Their intrinsic  
biocompatibility and the nanometer dimensions of their constitutive 
crystals not only allow one to envision applications in bone tissue 
regeneration, but also in other medical fields such as nanomedicine, 
and in particular in view of cell diagnosis.
 In this mini-review, we look back at 10 years of our dedicated 
research, and summarize the main advances made in terms of 
preparation, physical-chemical characterizations and biological 
evaluations of colloidal formulations of biomimetic apatite-based 
nanoparticles, which we illustrate here with the angle of cancer  
diagnosis. The confirmed exceptional biocompatibility of these  
engineered nanoparticles, associated to the possibility to confer  
them luminescence properties by way of controlled lanthanide  
doping, and their capacity to be internalized by cells, including with  

cancer cell addressing abilities (shown here as a proof of concept), 
underline that biomimetic apatite-based colloidal nanoparticles are  
particularly promising for nanomedicine applications, for example 
related to diseased cells diagnosis. Multidisciplinary research on 
these functional nanoparticles, initiated as described here, has now 
generated emulation in the scientific community where the concept 
of apatite nanoparticles for nanomedicine is being, gratifyingly,  
appropriated.
Keywords: Biomimetic apatites; Calcium phosphate; Cell diagnosis;  
Colloid; Luminescence; Medical imaging; Theranostic
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 Taking into account all these aspects, the development of new 
types of nano-systems for nanomedicine, and in particular for cellular  
diagnosis, can only be encouraged. And in this view, the use of  
bio-inspired or even biomimetic compounds, mimicking compounds 
fabricated by nature itself, could serve as primary smart materials 
due to “advanced” biocompatibility properties. Among naturally  
occurring compounds observed in vivo in vertebrates such as humans, 
are calcium phosphate compounds exhibiting a crystalline structure 
called “apatite” [11]: bone and dentin tissues contain apatitic materials 
in the form of nanometer-sized crystals of a few tens of nanometers 
in length and up to about a tenth of nanometers in width. Apatite  
nanoparticles are thus already present in vertebrates - although in an 
agglomerated form and associated to collagen fibers - and the high 
surface reactivity of these nanocrystals is known to play a central  
role in the homeostasis of ionic and molecular species from body 
fluids. Apatite surface reactions like ionic exchanges and molecular  
adsorption/desorption processes help to maintain constant adequate 
concentrations for normal body functions [12,13].
 The physico-chemistry and reactivity of biomimetic  
nanocrystalline apatites has been investigated in previous works  
[14-23], including in review studies (eg: [11]). Briefly, it may be  
reminded that the apatite structure is quite accommodating and 
can accept many types of ionic substituents that confer additional  
properties to the apatitic nanocrystals. Also, the adsorptive potential 
of the surface of apatitic nanocrystals is quite large, which leads to a 
wider range of possibilities for association with many organic (bio)
molecules. For example, surface grafting of enzymes [24], growth  
factors [25], anti-osteoporotic drugs [26,27], DNA [28], and so on 
have been studied previously. These wide adsorptive abilities and 
versatile ion accommodation capacity then make of bio-inspired  
nanocrystalline apatites an obvious platform for developing the  
armamentarium of biologists and clinicians, either in the field of 
bone reconstruction or - taking into account the intrinsically high  
biocompatibility of these bio-inspired systems - in other application 
fields such as nanomedicine, for diagnosis and/or therapy. Attempts 
to produce drug or antibody loaded nanoparticles of hydroxyapatite  
were reported [29,30], but the absence of stabilizing agent in the 
preparation of hydroxyapatite nanosized crystals leaves a doubt 
concerning the stability of these particles in cell culture media or 
in vivo; as the use of an adsorbed dispersing agent on the surface 
of apatite nanoparticles appears as a prerequisite for preventing  
aggregation phenomena. The use of molecules like DNA strands has been  
tempted, especially in view of transfection assays [31,32], but the  
presence of various negatively charged phosphate group along the 
whole backbone of DNA also allows one to wonder about long-term 
stability due to the potential creation of lateral molecular interactions 
or interaction with other (bio)molecules present in the medium.
 In this article, we review 10 years of initiatory research on this 
field that we carried out in view of the setup and study of biomimetic  
apatite-based colloidal functional nanoparticles for nanomedicine, 
with a special focus here on cancer cell diagnosis. We recapitulate  
progresses made on i) the formulation of apatite colloids with  
individualized nanoparticles, ii) the study of some of their properties 
for a possible use as nanoprobes (including drying and re-suspending  
ability as well as the adjunction of luminescence properties), iii) the 
confirmation of their high biocompatibility, and iv) their use for  
cancer cell interaction by coupling the nanoparticles with a cell  
targeting agent. Promising application perspectives are underlined 
along the text, for functionalized nanoparticles based on biomimetic 
nanocrystalline apatites, especially in the context of nanomedicine.

Materials and Methods
Preparation of apatite colloidal suspensions

 The protocol used for synthesizing apatite-based colloids was  
described previously [33]. All starting salts were at least of  
reagent-grade purity. Briefly three starting aqueous solutions 
were prepared: solution (A) containing a mixture of calcium and  
europium (or terbium) nitrates (Merck). The Ln/(Ca+Ln) mole  
ratio, where Ln stands for the lanthanide ions used (Eu3+ or Tb3+), was 
generally set to 2 mol%. The total Ca + Ln amount in solution (A) 
was 4.87 mmol dissolved in 6.25 ml of deionized water. For purely 
calcic systems, neither europium nor terbium was added. The second  
solution, called (B), contained the stabilizing agent, namely 4.87 
mmol of 2-Aminoethylphosphate (noted AEP), or 0.61 mmol of  
phosphocholine chloride (calcium salt tetrahydrated, noted PhCol), 
or 0.08 mmol of Phosphonated Polyethylene Glycol ((PEG)P) at 
5200 or at 5800 g/mol, dissolved in 12.5 ml of deionized water. The 
AEP and PhCol were purchased at Sigma Aldrich and TCI Europe  
respectively. The (PEG)P polymers were prepared on-demand and 
purchased from the company SPECIFIC POLYMERS (Montpellier, 
France), Lot # PEO Phosphonic acid SP-1P-1-001 [CAS. No. 911391-
95-2]. Finally solution (C) was composed of 1.62 mmol of ammonium 
hydrogenphosphate (Prolabo VWR) dissolved in 6.25 ml of deionized 
water. Solution (A) was added under stirring to solution (B), leading 
to the mixture (D) for which the pH was adjusted to 9.5. Then (D) 
was added into solution (C) for which the pH value was previously  
adjusted to 9.5. The suspension was then introduced in an oven preset  
at 100°C, for 16 h, for an ageing step. The colloidal suspensions  
obtained were then purified by dialysis process as detailed in ref. [34]. 
For biological testing, the final pH of the suspension was then reduced 
to the physiological value (pH ~ 7.4). For AEP-stabilized colloids, this 
was performed by addition of a solution of sodium Hexametaphos-
phate (HMP) at a concentration of 0.08 M, added until reaching a pH 
of 7.4. The methodology followed for the preparation of such colloids 
is summarized in figure 1.

 When mentioned in the text, Folic Acid (FA) was added in the 
reacting medium at the same time as the preparation of solution (A). 
The FA concentration used was typically 0.45 mM.

Figure 1: Synthesis methodology established for the preparation of apatite 
colloids.

Solution of calcium 
(± Eu/Tb) salt

Solution of stabilizing 
agent (ex: AEP)

Solution of  
hydrogenphosphate salt

pH adjustment

pH adjustment

pH adjustment

Post-adjustment to pH 7.4 
and biological use

PURIFICATION 
Ex: dialysis

AGEING STEP  
Ex: 100°C – 16 h

colloid

R
E

A
C

TA
N

T 
M

IX
IN

G

specific-polymers
Highlight



Citation: Drouet C, Al-Kattan A, Choimet M, Tourrette A, Santran V, et al., (2015) Biomimetic Apatite-Based Functional Nanoparticles as Promising New-
comers in Nanomedicine: Overview of 10 Years of Initiatory Research. J Gen Pract Med Diagn 1: 001.

• Page 3 of 9 •

J Gen Pract Med Diagn
ISSN: HGPMD, Open Access Journal

Volume 1 • Issue 1 • 100001

 Freeze-drying was performed on a Christ Alpha 2-4 LD freeze  
dryer operating at -80°C and less than 0.120 m bars of residual  
pressure. Spray drying experiments were run on a Buchimini Spray 
Dryer B 290 (Buchi, Germany). Briefly, the suspension was fed into 
the instrument by a peristaltic pump and sprayed with a 0.7 mm  
nozzle tip, by means of a flow of compressed air, in the drying  
chamber of the apparatus. A parallel flow of heated air aspirated  
induced the quick evaporation of water from the drops, leading to the 
formation and recovery of solid particles. The instrumental settings 
were the following: inlet temperature ~105°C, outlet temperature 
~60°C, atomizing gas flow rate: 670 L/h, liquid flow rate: 1.8 ml/min, 
aspirator power: 80%, volume of suspension tested per experiment:  
20 ml. When mentioned in the text, glucose was added to the medium 
prior to drying experiments. Typically, 150 mg of glucose were added 
to 13.5 ml of suspension. Re-dispersion in water of the dry composite 
apatite/glucose agglomerates formed upon drying was studied under 
moderate magnetic stirring (300 rpm).

Physico-chemical characterizations

 The crystallographic structure of the nanoparticles was checked by 
X-Ray Diffraction (XRD) using a CPS 120 INEL diffractometer with 
the Kα1 cobalt radiation (λ = 1.78892 Å). Fourier Transform Infrared  
(FTIR) analyses were performed, for additional characterization,  
using a Nicolet 5700 spectrometer operating in the 400-4000 cm-1 
(resolution of 4 cm-1).

 Scanning Electron Microscopy (SEM) analyses were performed on 
a LEO VP135 microscope operated at 15 kV. Transmission Electron 
Microscopy (TEM) was run on a JEOL JEM-1011 microscope set at 
100 keV.

 The particle size of the colloids was determined without dilution  
by Dynamic Light Scattering (DLS) with a Zetasizer Nano ZS  
apparatus from Malvern Instruments (λ= 630 nm). The dispersion 
of the data points was estimated to 0.5%. The same apparatus was 
used for zeta potential measurements, using a capillary cell, by a  
combination of electrophoresis and Laser doppler velocimetry.  
Rheological measurements were carried out at 25°C, using an AR  
rheometer (TA Instruments). The suspensions were analyzed by  
simple shear measurements using a parallel geometry (gap 1 mm) 
with serrated plates (diameter 60 mm). Experiments were realized in 
quadruplicate.

 Luminescence properties were investigated using a Horiba Jobin 
Yvon Fluorolog 3-11 spectrofluorometer equipped with a 450 W xenon 
lamp. Excitation and emission were measured at room temperature 
directly on the colloidal suspensions, purified by dialysis. Concerning 
Eu3+, excitation spectra were recorded between 350 nm and 600 nm 
by monitoring the [Eu3+] 5D0 → 7F2 emission at λem= 612 nm (spectral 
bandwidth = 2 nm). Emission spectra were recorded in the 500-700 
nm range, with spectral bandwidth of 1 nm, under selected excitation 
in the [Eu3+] 7F0 → 5L6 of Eu3+ at λex = 392.8 nm. For Tb3+, excitation 
spectra were recorded between 200 nm and 500 nm by monitoring the 
[Tb3+] 5D4 → 7F5 emission at λem= 540 nm (spectral bandwidth = 2 nm). 
Emission of Tb3+ in the 410-700 nm range, with spectral bandwidth 
of 2 nm, under selected excitation in the [Tb3+] 7F6→5G6 transition at  
λex = 379 nm. The transient characteristics of the emitting level 5D4 
and 5D0 respectively of Tb3+ and Eu3+ were investigated with the  
phosphorimeter FL-1040, equipped with a UV xenon flash tube.  

Emission decays were analyzed at chosen λex and λem on a time  
interval up to 8 ms. The analysis was made in quadruplicate. The time 
resolution imposed by the apparatus in the experimental conditions 
employed was 30µs.

Cytotoxicity and pro-inflammatory potential study

 The cytotoxicity of the colloids was assessed on the basis of MTT 
tests performed by the ICELLTIS Company (Labege, France) [35]. 
Two types of cells were used: human Adipose tissue Mesenchymal 
Stem Cells (AMSC) and breast cancer cells ZR-75-1, cultivated in  
humidified atmosphere with 5% CO2 at 37°C in Dulbecco’s Modified 
Eagle’s Medium (DMEM) supplemented with 10% fetal bovine serum 
and 1% antibiotics (penicillin/streptomycin). The cells were placed in 
96-well culture plates (30,000 cells per well) and each test was run in 
triplicate. After 24 h of preliminary incubation, the culture medium 
was replaced by fresh DMEM and the MTT tests were performed. Cell 
viability was assessed for various contact times over a period of 7 days, 
and 5 different concentrations of nanoparticles in the culture medium 
were tested: 0, 0.1, 1, 2, 5 and 10 mg/ml.

 The pro-inflammatory potential of the colloidal nanoparticles was  
investigated by following their interaction with human monocyte 
cells2 intended to mediate the inflammatory response to foreign  
substances. These cells are activated by inflammatory signals,  
conducing to an increased capacity to release pro-inflammatory and 
cytotoxic mediators such as Reactive Oxygen Intermediates (ROI) 
[36]. As indicated previously [35,37], the measure of the amount of 
possibly produced ROI was undergone by chemiluminescence: the 
generation of chemiluminescence was monitored continuously for 1 
h after incubation of the cells with luminol (66 mM) and after contact 
with the colloidal nanoparticles at various concentrations (1.2,12,60 
and 120 µg/ml). The experiments were run in triplicate. The negative 
control was based on experiments carried out without nanoparticles.

Cell uptake evaluation

 Cell uptake of colloidal apatite-based nanoparticles was followed, 
for FA-functionalized or FA-free nanoparticles, on both ZR-75-1  
(not over expressing folate receptors, FR-) and on T-47-D (ATCC, 
cells over expressing folate receptors, FR+) breast cancer cells, for a 
concentration of nanoparticles in the culture medium of 1.5 mg/ml. 
The negative control was carried out without nanoparticles. The tests, 
realized in triplicate, were carried out by the ICELLTIS Company 
(Labege, France). 24 h after seeding, the colloid was added to the cells 
during 24 h. After washing in PBS buffer, the cells were then counted 
and centrifuged. The residual cell pellets were dissolved in HCl 37% 
and incubated for 30 min to allow quantification of the intracellular 
Eu and Ca contents by ICP-AES. The analyses were performed by the 
MARION TECHNOLOGIES Company, Verniolle, France, with a  
relative uncertainty of 3%.

Results and Discussion

 As stated in the introductive section, this work was based on the 
exploration, as a proof on concept, of the potential use of biomimetic 
apatite-based colloidal nanoparticles in the field of nanomedicine, and 
especially for cancer cell diagnosis. Below, the main findings related 
to this investigation have been listed, ranging from physico-chemical 
aspects up to biological aspects.

2 - human peripheral blood mono nuclear cells, precursors of macrophages
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Preparation of individualized nanoparticles by way of  
colloidal formulation

 Biomimetic apatitic compounds correspond roughly to the  
general chemical formula Ca10-x(PO4)6-x(HPO4)x(OH)2-x, eventually 
substituted by either cations and/or anions. In bone [38] or in synthetic 
analogs prepared in conditions close to physiological ones [20], these  
compounds are comprised of nanocrystals. But their high specific  
surface area, their plate-like morphology and probably high surface 
energies give rise to a strong agglomeration effect between adjacent  
nanocrystals, leading to microcrystalline (or larger) aggregates.  
Moreover, this agglomeration process appears rather irreversible 
in practice. The large size of such aggregates, often larger than cells, 
constitutes a hurdle for use in nanomedicine applications. Ways 
to circumvent this drawback can be proposed, starting from the  
observation that the agglomeration process takes place as soon as 
precipitation is initiated in solution. Therefore, the control of the  
aggregation state of apatitic particles may be found by modifying the 
precipitation medium; and more precisely by adding in the solution 
a dispersing agent capable of i) adsorbing on the surface of apatite 
nanocrystals in formation and ii) of preventing/limiting the approach  
of adjacent nanocrystals by way of steric and/or electrostatic  
repulsion.

 This hypothesis was tested by adding, in the precipitating medium, 
organic molecules exposing an anionic end-group such as phosphate 
or phosphonate groups likely to interact strongly with the Ca2+ ions 
located on the surface of the apatite nanocrystals. In this paper, we 
report on our experiments performed by adding either AEP, PhCol, 
or (PEG)P in the medium (see details in the experimental section). 
Interestingly, in the presence of one of these molecules, a fluid  
suspension could be obtained in contrast to the experiment carried  

out without additive. These three molecules may thus be considered as 
dispersing agents making it possible to prepare colloidal suspensions. 
The apatitic nature of the colloidal nanoparticles obtained in all these 
experiments was systematically confirmed: the obtained XRD pattern 
(Figure 2a) was characteristic of an apatite phase (indexation with 
the JCPDS file 09-432 relative to hydroxyapatite), and FTIR spectra  
corresponded to bone-like apatite with the presence of phosphate 
groups and associated water molecules, as well as typical absorption 
bands due to AEP (Figure 2b).

 The colloidal-like aspect may be related to a distribution of 
the dispersing agent molecules around the particles, therefore  
hindering/limiting agglomeration between adjacent particles. In the 
case of AEP-stabilized colloids, for example, this matter of fact was 
indeed supported by zeta potential measurements pointing out a  
global positive surface charge (typically +12mV) due to the exposure  
of the -NH3+ terminal groups of AEP molecules, themselves  
interacting with exposed surface Ca2+ ions via their phosphate group. 
DLS analyses pointed out the nanometric dimensions of the colloidal  
particles, which followed monomodal particle size distributions  
dependent on experimental conditions (e.g., nature of dispersing 
agent used). Figure 2c, reports the typical case of an AEP-stabilized 
apatite colloid prepared aged 16 hours at 100°C and for an AEP/
Ca initial molar ratio of 1. Table 1, reports in a tabulated format the 
size characteristics3 of some of the colloidal nanoparticles obtained 
[40]. It may be noted that dimensions lower or around 100 nm were  
obtained for some of these suspensions, therefore opening  
perspectives in terms of nanoparticle/cells interaction in the field 
of nanomedicine where dimensions up to around 100 nm are often  
considered as optimal. In other cases, sizes larger than 100 nm were 
also obtained. Such variations show clearly the impact of the nature 
of stabilizing agent on the mean nanoparticle size obtained. For  
instance, in the case of (PEG) P-stabilized colloids, a significant  
decrease in particle size can be reached by increasing the PEG  
molecular weight (Table 1).

 In particular, AEP-stabilized apatite colloids retained our attention  
due to nanoparticle sizes of the order of 30 nm, also confirmed by 
direct analysis of the particles by TEM (Figure 2d). In this paper, 
the following sections will thus mostly focus on such AEP-stabilized  
apatite colloids; the highly biocompatible4 character of AEP being 
also particularly advantageous. The methodology followed for the  
preparation of such colloids was summarized in figure 1 [41].  
Insights on the stability of such colloids were sought, by following the  

3 - Mode of the size distribution and polydispersity index [40].

 

Figure 2: Main physico-chemical characteristics of apatite colloids stabilized 
with AEP.

a) XRD pattern with apatite phase indexation of main peaks

b) FTIR spectrum

c) DLS particle size distribution (in nanometers)

d) TEM micrograph (reproduced with permission from reference [39])

Stabilizing agent 
used in colloidal 
formulation

Typical 
particle 
size*(nm)

Pdl** Chemical formula

PhCol 70 0.112 N(CH3)3+-CH2-CH2-O-P(O)(O¯)2

(PEG)P 5200 g/mol 200 0.225 CH3-O-[CH2-CH2-O]n-CH2-CH2-
CH2-P(O)(O¯)2

(PEG)P 5800 g/mol 120 0.156 CH3-O-[CH2-CH2-O]n-CH2-CH2-
CH2-P(O)(O¯)2

AEP 30 0.1 NH3+-CH2-CH2-O-P(O)(O¯)2

Table 1 : Main size characteristics of some colloidal formulations prepared with 
various stabilizing agents.

*Size corresponding to the maximum of the monodisperse domain (mode of the 
size distribution)

**Polydispersity index (giving a measure of dispersion in size)
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possible evolution of their physical characteristics over colloid 
ageing time. Rheological characterization [39] pointed out the  
rheofluidifying behavior of such AEP/apatite colloids, witnessed by a 
nearly exponential decrease of the suspension viscosity upon increase 
of the shear rate, in the range 0.1 to 0.001 Pa.s for shear rates varying 
from 0 and 300 s−1. Upon ageing over a 2-week period, a progressive 
increase of the suspension viscosity was detected, with an increased  
yield stress, evolving towards a threshold value close to 0.1 Pa.  
However, interestingly, DLS measurements carried out 1,4,7 
and 15 days after synthesis indicated that the mean particle size  
(hydrodynamic diameter) remained rather unchanged and close 
to 30-35 nm over the whole period of colloid ageing. These results  
suggest that, despite some progressive structuration of the suspension  
over time at room temperature, no real agglomeration or  
sedimentation occurred and the nanoparticles size remained in the 
desired window for nanomedicine applications.

Drying and re-dispersion of colloidal apatite nanoparticles
 From practical viewpoints, the manipulation of powder samples  
may be preferred to that of liquid suspensions, as in the case of 
some vaccine formulations for instance. In particular, the storage of  
powdered compounds over long periods of time is expected to 
be easier than that of fluid colloids. Also, other aspects such as  
sterilization processes may be found facilitated. For that reason, 
we also investigated the possibility to dry apatite-based colloids as  
presented above, while retaining the ability to re-suspend the  
nanoparticles in a subsequent step without loss of physico-chemical 
characteristics such as particle size.

 It may be noted here that direct drying of apatite colloids without 
extra care leads to significant agglomeration, hardly reversible after 
re-immersion. This was linked to the high surface energy of apatite 
nanocrystals which are prone to interact strongly with each other 
upon elimination of water, to minimize the total surface energy of the 
system [39].

 We then developed a strategy aiming at preserving the  
dispersibility of the nanoparticles, and based on the addition of a  
water-soluble matrix prior to the drying process. Experiments were 
here run by selecting glucose. Typically, 150 mg of glucose were  
dissolved in the colloidal medium (13.5 ml), and the system was then 
subjected to freeze-drying. In this case, re-suspension proved to be 
fully effective with an absence of sedimentation, and DLS experiments  
showed that no major change in particle size was detected as  
compared to the initial suspension purified by dialysis as exposed 
previously [34]. The advantageous role of glucose in this experiment 
can be explained, during the drying process, by the formation of a 
solid matrix preventing particle aggregation by a physical hindrance 
process. After re-immersion in aqueous medium, the solubilization of 
glucose then allows the release of the nanoparticles in the fluid.

 The analysis by SEM (Figure 3a) of the freeze-dried glucose/apatite 
suspension suggested that the apatite nanoparticles were embedded  
within large glucose sheets of various dimensions and shapes.  
Although re-dispersion in aqueous medium was found to be efficient,  
the search for a better controlled morphology and size for the  
composite glucose/apatite was attempted with the objective of better  
controlling the re-dispersion kinetics. Noticeable progress was 
made by replacing the freeze-drying process by the spray drying  
technology. By using an inlet temperature of ~105°C and outlet  
 

temperature of 60°C, for example (see experimental section), the 
spray drying of AEP-stabilized colloidal suspensions led (with a 
yield estimated to 74%) to the retrieval of purely spherical composite  
apatite/glucose particles (Figure 3b), with a monomodal size  
distribution centered around 1.2 ± 0.9 µm. The re-dispersion was 
also found to be more effective and better controlled than with solely 
freeze-dried particles (Figure 3c).

Conferring luminescence properties

 The possibility to confer luminescence to such apatite-based 
nanoparticles was studied for a possible use in the field of medical 
diagnosis through fluorescence imaging. Among the advantages 
of the apatite structure is its high capacity to accommodate foreign 
ions. In this work, the substitution, during apatite colloid synthesis, 
of part of the calcium Ca2+ ions by lanthanide ions such as europium 
(Eu3+) and terbium (Tb3+) ions was investigated, so as to render the 
nanoparticles luminescent respectively in the red and green domains 
of the visible light spectrum. Such ionic substitutions, at least up to 
2 at % of Eu or Tb relative to the calcium content per apatite unit  
 

formula, were shown to be effective by the observation by XRD of 
a single apatite phase in each case. The substitution of divalent  
calcium by trivalent europium or terbium in the apatitic  
crystallographic array was discussed elsewhere in detail [33]; for 
non-stoichiometric apatites, several substitution scenarios can  
contribute to facilitate this process.

 As could be expected, excitation and emission line characteristics 
of the luminescence behavior of Eu3+ or Tb3+ ions, respectively, were 
observed (Figure 4a and 4b). These have been described in previous 
occurrences [33,42]. Briefly, in the case of europium, main lumines-
cence maxima (recorded under excitation at 393 nm) were localized in  
4 - AEP represents indeed the hydrophilic head of phosphatidylethanolamine, one type of  
phospholipids constitutive of cell membranes [41].

Figure 3: SEM micrographs for freeze-dried.

(a) Spray-dried 

(b) AEP-stabilized biomimetic apatite suspensions enriched with glucose  
(hydrosoluble matrix)

(c) Re-dispersion kinetics in water at 25°C
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the ranges 583-603, 605-627 and 685-715 nm, assignable to the [Eu3+] 
5D0→7F1, 5D0→7F2 and 5D0→7F4 transitions. In the case of terbium, the 
emission spectrum (recorded under excitation at 379 nm) showed 
peaks resulting from the 4f-4f transition of the Tb3+ ions: [Tb3+] 
5D4→7F6 (at 488 nm), 5D4→7F5 (at 545 nm), 5D4→7F4 (at 586 nm) and 
5D4→7F3 (at 623 nm).
 Beyond the low toxicity of Eu or Tb ions, another advantage 
of using these elements to convey luminescence lies in their long  
luminescence lifetime. This was investigated by following  
luminescence decay curves, over time [42]; the example of a colloid  
enriched with 2 at %Eu (relative to Ca) is given in figure 4c, in  
logarithmic scale. For curves approximated to mono-exponential  
decay functions, the so-called “lifetime value” was found to reach  
1.34 ± 0.14 ms for Eu ([Eu3+] 5D0) and 2.15 ± 0.21 ms for Tb 
([Tb3+] 5D4). These values, of the order of the millisecond, are  
noticeably larger than the luminescence lifetime of biological tissue 
auto-fluorescence, of the order of the nanosecond, thus enabling 
one to envision with such functional nanoparticles the analysis of  
biological materials over extended periods of time and/or the use 
of time-resolved luminescence equipment, e.g., for cell sorting.  
Intracellular diagnosis applications using colloidal apatite-based 
self-luminescent nanoparticles could therefore be seen as a promising 
approach.
 Another study [43], on non-colloidal apatite, showed the  
possibility to visualize by laser scanning confocal microscopy some 
Eu-doped apatite particles internalized by human pancreatic cells 
Capan-1, exploiting their luminescence feature. The development 
of colloidal formulations, allowing a control of particle size and size  
distribution, is now expected to widen considerably the significance of 
the discovery/use of biomimetic apatite-based colloidal nanoparticles  
in the field of nanomedicine, and in particular for diseased cells  
diagnosis thanks to improved cell uptake capabilities. It may be noted  

that, contrarily to organic luminescent probes which degrade rapidly 
due to the photo bleaching effect, the luminescence of these Eu- or 
Tb-doped apatite nanoprobes is photo stable; also this luminescence  
feature can be obtained within or very close to the visible light  
domain, thus making them suitable for prolonged examination of live 
cells.

Biocompatibility aspects
 Taking into account the nanomedicine applications envisioned for 
such apatite-based colloidal nanoparticles, and despite their intrinsic 
bio-inspired nature, it was important to point out on a quantitative  
manner their high cytocompatibility. This was carried out by  
introducing the colloidal nanoparticles to various types of cells [35]. 
In particular, MTT tests were run on adipose tissue mesenchymal 
stem cells, denoted AMSC, and human breast cancer cells ZR-75-1.  
Results indicated that cell viability remained close to 100%, over 
7 days of contact time, for concentrations of nanoparticles in the  
culture medium as high as 1 mg/ml for AMSC, and in the range 
1-2 mg/ml for ZR-75-1 (Figure 5a). Such levels of nanoparticle  
concentration are considered as particularly high, which thus points 
to the very low cytotoxicity of these colloidal nanoparticles. 

 Besides such direct cytotoxicity evaluations, it was also  
interesting to investigate the “pro-inflammatory potential” of these 
colloidal nanoparticles by checking the interaction with human 
monocytes [35]. To this aim, the amount of Reactive Oxygenated  
radical Intermediates (ROI) possibly produced by monocytes under  
inflammatory stress was followed by way of luminol-enhanced  
Chemiluminescence (CL). CL measurements performed after 1 hr 
of contact between the colloidal nanoparticles5 purified by dialysis 
and stabilized at physiological pH, and monocyte cells showed no  
significant effect (Figure 5b), whether activator or inhibitor, on 
the production of ROI, which remained at the level of the control6. 
These results thus suggested the absence of significant inflammatory  
response for such colloidal apatite nanoparticles.

Cell uptake and targeting aspects
 The previous sections thus indicated the possibility to formulate  
fluid colloids containing individualized biomimetic apatite  
nanoparticles, with dimensions adapted to nanomedicine and  
interaction with cells; they also pointed out the high biocompatibility  
of these nanoparticles, as well as the possibility to make them  
luminescent, either red of green.

 At this stage, it was thus appealing to go one step forward and  
follow cell uptake, from a quantitative point of view. Also, in the 
field of nanomedicine, the search for systems capable of addressing 
more specifically some types of diseased cells (e.g., cancer cells) are 
an important aspect. As a proof of concept of using such colloids for 
targeted/differential cell interaction, we functionalized the surface 
of our Eu-doped AEP-stabilized nanoparticles with folic acid, FA, 
via chemical adsorption. FA, or vitamin B9, is indeed known to be  
recognized more specifically by cells that over express folate receptors,  
FR, as in the case of some ovary or breast cancers for instance 
[44,45]. The capacity for such FA-functionalized nanoparticles to be  
internalized by cells, most probably via endocytosis, was then  
followed on both T-47-D (over expressing folate receptors [46], or 
“FR+”) and ZR-75-1 (without over expression [47], or “FR-”) breast 
cancer cells. The extent of cell uptake was determined by measure by  

5 - Nanoparticles concentration range studied: 0 - 120 µg/ml
6 - Control experiment carried out in the absence of nanoparticles

Figure 4: Excitation and emission characteristics.

a) Eu-doped 

b) Tb-doped systems

c) luminescence lifetime of Eu-doped apatite colloid (2 at% Eu relative to Ca) 
reproduced in part from [42], with permission
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(ICP-AES) of the amount of calcium and europium ions in the  
cytoplasm after a contact time of 24 hours with the nanoparticles, 
functionalized or not with FA. No significant cell death was detected 
during this period. Control experiments carried out in the absence of 
nanoparticles in the medium recurrently showed a low intracellular 
calcium content (< 5 µg per million cells) for both cell types as well as 
the absence of intracellular europium ions, as expected.

 For cells contacted with nanoparticles without functionalization 
by folic acid (denoted “NP”), the analysis of intracellular Ca and Eu 
values indicated that both ZR-75-1 and T-47-D cells were able to  
internalize some “background” amount of nanoparticles7 but limited  
to Ca. 20 pmol of colloidal nanoparticles per million cells. On the  
contrary, the uptake of FA-grafted nanoparticles, denoted NP-FA, 
was significantly enhanced and especially for the FR+ T-47-D cells. 
It was found to be 3- to 4- fold greater than in the absence of FA  
functionalization, and cell uptake remained 1.5 to 2 times greater for 
T-47-D cells, reaching up to 86.2 pmol of colloidal nanoparticles per 
million cells as compared to ZR-75-1 cells. These results unveil the 
more selective uptake of FA-modified apatite-based nanoparticles  
by the FR+-cell type, here represented by T-47-D cells, therefore  
evidencing some targeting abilities for such colloidal engineered 
nanoparticles. These findings also allow us to envision even wider 
perspectives by substituting FA by other cell-targeting agents, so as to 
increase further the targeting selectivity and to adjust cell recognition 
capabilities of these colloidal nanoparticles to various cell types.

 It may be mentioned here that Methotrexate (MTX), a  
chemotherapeutic drug, is an anti-folate compound with a  
chemical formula extremely close to that of folic acid. Adsorption 
experiments have shown the possibility to replace FA by MTX and 
to obtain MTX-functionalized apatites. This then opens not only 
perspectives in terms of cell diagnosis but also of therapeutics, using 
MTX for intracellular drug delivery. The era of theranostic thus also 
becomes within reach.
 

Concluding Remarks and Perspectives
 This mini-review came back on the main progresses that we made 
during last decade in terms of preparation and characterization 
of colloidal formulations of biomimetic apatites, the possibility to  
dry/re-suspend the nanoparticles while retaining their characteristics, 
 
7 - In similar amounts independently of the presence of FR receptors on the cells

Figure 5: High biocompatibility.

a) Example of cell viability of ZR-75-1 cells

b) Absence of detectable increase in the production of ROI by human monocytes contacted with the nanoparticles (example for AEP-stabilized 2% Eu-doped 
apatite colloids)
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and to confer them luminescence properties in variable colors, 
their high biocompatibility, and their cell uptake abilities with the  
eventuality of addressing more specifically some types of (cancer) 
cells, as is illustrated here by folic acid mediation as a proof of concept. 

 All these features may now allow one to envision promising  
perspectives in the use of such colloidal bio-inspired nanoparticles in 
the field of nanomedicine, and especially with the final aim of setting 
up point-of-care medical diagnosis solutions. 

 Some potential challenges or questions however still remain. For 
example, hematocompatibility and Foreign Body Response (FBR) will 
have to be investigated in more detail to get a wider evaluation of such 
systems, for example in view of intravenous administration. Also,  
stability studies on various colloidal formulations will have to be  
further explored, especially after contact with plasma proteins, as 
post-aggregation has to be prevented. Sterilization aspects will also 
have to be inspected more specifically. From a cell-targeting viewpoint, 
the necessity to increase the sensitivity of apatite-based nanoparticles 
to bio-markers of interest also represents an important challenge.

 Multidisciplinary research on these inspiring functional nanopar-
ticles, initiated as described in this mini-review, has undoubtedly 
started to create a great movement of interest from the “biomaterials” 
and “calcium phosphate” scientific communities, where the concept 
of apatite nanoparticles for nanomedicine is being contemplated and  
appropriated. Research on these systems is thus bound to continue 
more than ever, and extended worldwide, with the final objective of 
clinical diagnosis/therapeutic or else theranostic uses.
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